Відмінності між версіями «Й»

Матеріал з Київський столичний університет імені Бориса Грінченки
Перейти до: навігація, пошук
(Див. також)
(Джерела та література)
Рядок 33: Рядок 33:
  
 
==Джерела та література==
 
==Джерела та література==
     Колмогоров А.Н. (1974). Основные понятия теории вероятностей (вид. 2). Москва: Наука. с. 119.
+
     [http://uk.wikipedia.org/wiki/%D0%9A%D0%BE%D0%BB%D0%BC%D0%BE%D0%B3%D0%BE%D1%80%D0%BE%D0%B2_%D0%90%D0%BD%D0%B4%D1%80%D1%96%D0%B9_%D0%9C%D0%B8%D0%BA%D0%BE%D0%BB%D0%B0%D0%B9%D0%BE%D0%B2%D0%B8%D1%87 Колмогоров А.Н.] (1974). Основные понятия теории вероятностей (вид. 2). Москва: Наука. с. 119.
 
     В. Е. Гмурман. Теория вероятностей и математическая статистика. Издание четвертое, дополненное. М. 1972
 
     В. Е. Гмурман. Теория вероятностей и математическая статистика. Издание четвертое, дополненное. М. 1972
  

Версія за 13:10, 29 листопада 2013

Й,Ймові́рність (лат. probabilitas, англ. probability) — числова характеристика можливості того, що випадкова подія відбудеться в умовах, які можуть бути відтворені необмежену кількість разів. Імовірність є основним поняттям розділу математики, що називається теорія імовірностей.

Випадковою подією називається подія, результат якої не може бути відомий наперед. Навіть у тому разі, коли насправді подія детермінована своїми передумовами, вплив цих передумов може бути настільки складним, що вивести з них наслідок логічно й послідовно, неможливо. Наприклад, при підкидуванні монети, сторона на яку монета впаде визначається положенням руки і монети в руці, швидкістю, обертовим моментом тощо, однак відслідкувати всі ці фактори неможливо, тому результат можна вважати випадковим.

Існують два підходи до означення імовірності: математично-аксіоматичний і Баєсів. Аксіоматичний підхід, строго сформульований Колмогоровим, будується на припущенні, що імовірності елементарних випадкових подій задані, і зосереджується на визначенні ймовірностей складних подій, що є сукупністю елементарних. Так, наприклад, при підкидуванні шестигранного кубика гральної кості, ймовірності випадіння будь-якого числа, вважаються однаковими й рівними 1/6. Виходячи з цієї аксіоми, теорія ймовірності може розрахувати ймовірність того, що сума чисел на двох костях буде, наприклад, 8.

Баєсів підхід не робить припущень про ймовірності елементарних подій, а намагається отримати їх із аналізу попереднього досвіду, спираючись на теорему Баєса і на попередні гіпотези. Баєсів підхід ближчий до того, як визначаються імовірності випадкових подій у природознавстві. Оскільки ці ймовірності наперед невідомі, результати серії дослідів розбиваються на сприятливі й несприятливі, і експериментально визначена ймовірність дорівнює відношенню числа сприятливих подій до числа дослідів, тобто частоті подій.

Надалі в цій статті використовується аксіоматичний математичний підхід. сз. = І, сз. (см.).

Сучасні словники

Тлумачення слова у сучасних словниках

Ілюстрації

Photoicon.png Photoicon.png Photoicon.png Photoicon.png

Медіа

Див. також

   -Аксіоматика теорії ймовірностей
   -Частота події
   -Геометрична ймовірність
   -Густина імовірності
   -Формула повної ймовірності
   -Умовна ймовірність
   -Амплітуда ймовірності

Джерела та література

   Колмогоров А.Н. (1974). Основные понятия теории вероятностей (вид. 2). Москва: Наука. с. 119.
   В. Е. Гмурман. Теория вероятностей и математическая статистика. Издание четвертое, дополненное. М. 1972

Зовнішні посилання

Virtual Laboratories in Probability and Statistics (University of Alabama in Huntsville) (Віртуальна лабораторія імовірності і статистики)