Відмінності між версіями «Арихметика»
Рядок 19: | Рядок 19: | ||
Про досить високий рівень арифметичної культури вавілонян за 2—3 тис. років до н. е.(наша ера) дозволяють судити клинописні математичні тексти . Письмова нумерація вавілонян в клинописних текстах є своєрідним з'єднанням десяткової системи (для чисел, менших 60) з шестідесятірічной, з розрядними одиницями 60, 60 2 і т.д. Найбільш істотним показником високого рівня А. є вживання шестідесятірічних дробів з поширенням на них тієї ж системи нумерації, аналогічно сучасним десятковим дробам. Техніка виконання арифметичних дій у вавілонян, в теоретичному відношенні аналогічна звичайним прийомам в десятковій системі, ускладнювалася необхідністю удаватися до обширних таблиць множення (для чисел від 1 до 59). У клинописних матеріалах, що збереглися, були, мабуть, навчальні посібники, знаходяться, крім того, і відповідні таблиці зворотних чисел (двозначні і тризначні, тобто з точністю до 1 / 60 2 і 1 / 60 3 ), що застосовувалися при діленні. | Про досить високий рівень арифметичної культури вавілонян за 2—3 тис. років до н. е.(наша ера) дозволяють судити клинописні математичні тексти . Письмова нумерація вавілонян в клинописних текстах є своєрідним з'єднанням десяткової системи (для чисел, менших 60) з шестідесятірічной, з розрядними одиницями 60, 60 2 і т.д. Найбільш істотним показником високого рівня А. є вживання шестідесятірічних дробів з поширенням на них тієї ж системи нумерації, аналогічно сучасним десятковим дробам. Техніка виконання арифметичних дій у вавілонян, в теоретичному відношенні аналогічна звичайним прийомам в десятковій системі, ускладнювалася необхідністю удаватися до обширних таблиць множення (для чисел від 1 до 59). У клинописних матеріалах, що збереглися, були, мабуть, навчальні посібники, знаходяться, крім того, і відповідні таблиці зворотних чисел (двозначні і тризначні, тобто з точністю до 1 / 60 2 і 1 / 60 3 ), що застосовувалися при діленні. | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
==Ілюстрації== | ==Ілюстрації== |
Версія за 21:54, 1 грудня 2013
Арихме́тика, -ки, ж. Ариѳметика. Арихметикою або щотницею зветься така наука, що навчає без помилок щитати (лічити). Кон. Ар. 1. Ум. Арихметичка. Арихметичка трудна мені здалася. Г. Барв. 403.
Зміст
Сучасні словники
Тлумачення слова у сучасних словниках
Арифметика (греч. arithmetika, від arithmys — число), наука про числа, в першу чергу про натуральні (цілих позитивних) числа і (раціональних) дробах, і діях над ними.
Історична довідка
Виникнувши в глибокій старовині з практичних потреб рахунку і простих вимірів, А. розвивалася у зв'язку з ускладненням господарської діяльності і соціальних стосунків, грошовими розрахунками, завданнями вимірів відстаней, часу, площ і вимогами, які пред'являли до неї інші науки. Про виникнення рахунку і про початкові стадії утворення арифметичних понять судять зазвичай за спостереженнями, що відносяться до процесу рахунку у первісних народів, і, непрямим чином, шляхом вивчення слідів аналогічних стадій, що збереглися в мовах культурних народів і що спостерігаються при засвоєнні цих понять дітьми. Ці дані говорять про те, що розвиток тих елементів розумової діяльності, які лежать в основі процесу рахунку, проходіт ряд проміжних етапів. До них відносяться: уміння взнавати один і той же предмет і розрізняти предмети в тій, що підлягає рахунку сукупності предметів; уміння встановлювати вичерпне розкладання цієї сукупності на елементи, відмітні один від одного і в той же час рівноправні при рахунку (користування іменованою «одиницею» рахунку); уміння встановлювати відповідність між елементами двох безлічі, спочатку безпосередньо, а потім зіставленням їх з елементами разів назавжди впорядкованої сукупності об'єктів, тобто сукупності об'єктів, розташованих в певній послідовності. Елементами такої стандартної впорядкованої сукупності стають слова (числівники), що вживані при рахунку предметів будь-якої якісної природи і відповідають утворенню відвернутого поняття числа. За самих різних умов можна спостерігати схожі особливості поступового виникнення і удосконалення перерахованих навиків і що відповідають їм арифметичних понять.
Спочатку рахунок виявляється можливим лише для совокупностей з порівняно невеликого числа предметів, за межами якого кількісні відмінності усвідомлюються смутно і характеризуються словами, синонімами слова «багато», що є; при цьому знаряддям рахунку служать карби на дереві (рахунок «бирки»), рахункові камінчики, чотки, пальці рук і т.п., а також безліч, що укладає постійне число елементів, наприклад: «очі» — як синонім чисельник «два», гроно руки («пясть») — як синонім і фактична основа числівника «п'ять», і т.п.
Словесний порядковий рахунок (раз, два, три і т.д.), пряму залежність якого від пальцьового рахунку (послідовне вимовлення назв пальців, частин рук) в деяких випадках можна прослідити безпосередньо, зв'язується надалі з рахунком груп, що містять певне число предметів. Це число утворює підстава відповідної системи числення, зазвичай, в результаті рахунку по пальцях двох рук, рівне 10. Зустрічаються, проте, і угрупування по 5, по 20 (французьке 80 «quatre-vingt» = 4 ´ 20), по 40, по 12 («дюжина»), по 60 і навіть по 11 (Нова Зеландія). У епоху розвинених торгівельних стосунків способи нумерації (як усною, так і письмовою) природно виявляли тенденцію до одноманітності в племен, що спілкувалися між собою, і народностей; ця обставина зіграла вирішальну роль у встановленні і поширенні вживаною в наст. час системи нумерації ( числення ), принципу маєткового (порозрядного) значення цифр і способів виконання арифметичних дій. Мабуть, аналогічними причинами пояснюється і загальновідома схожість імен числівників в різних мовах: наприклад, два — dva (санськр.), duo (греч.), duo (лат.), two (англ.).
Джерелом перших достовірних відомостей про стан арифметичних знань в епоху древніх цивілізацій є письмові документи Ін.(Древн) Єгипту ( папіруси математичні ), написані приблизно за 2 тис. років до н. е.(наша ера) Це — збірки завдань з вказівкою їх рішень, правил дій над цілими числами і дробами з допоміжними таблицями, без яких би то не було пояснень теоретичного характеру. Вирішення деяких завдань в цій збірці виробляється, по суті, за допомогою складання і вирішення рівнянь; зустрічаються також арифметичні і геометричні прогресії.
Про досить високий рівень арифметичної культури вавілонян за 2—3 тис. років до н. е.(наша ера) дозволяють судити клинописні математичні тексти . Письмова нумерація вавілонян в клинописних текстах є своєрідним з'єднанням десяткової системи (для чисел, менших 60) з шестідесятірічной, з розрядними одиницями 60, 60 2 і т.д. Найбільш істотним показником високого рівня А. є вживання шестідесятірічних дробів з поширенням на них тієї ж системи нумерації, аналогічно сучасним десятковим дробам. Техніка виконання арифметичних дій у вавілонян, в теоретичному відношенні аналогічна звичайним прийомам в десятковій системі, ускладнювалася необхідністю удаватися до обширних таблиць множення (для чисел від 1 до 59). У клинописних матеріалах, що збереглися, були, мабуть, навчальні посібники, знаходяться, крім того, і відповідні таблиці зворотних чисел (двозначні і тризначні, тобто з точністю до 1 / 60 2 і 1 / 60 3 ), що застосовувалися при діленні.